115. Synthesis and NMDA Antagonistic Properties of the Enantiomers of 4-(3-Phosphonopropyl)piperazine-2-carboxylic Acid (CPP) and of the Unsaturated Analogue (E)-4-(3-Phosphonoprop-2-enyl)piperazine-2-carboxylic Acid (CPP-ene)

by **Bernard Aebischer*, Peter Frey, Hans-Peter Haerter, Paul L. Herrling,** and **Werner Mueller**

Sandoz Research Institute Berne Ltd., Monbijoustrasse 115, CH-3007 Berne

and **Henry J. Olverman**

Department of Pharmacology, University of Edinburgh, **1** George Square, Edinburgh, U. K.

and **Jeffrey C. Watkins**

Department of Pharmacology, The Medical School, Bristol BS8 ITD, U.K.

(12.V.89)

-~ ~

The *(R)-* and (S)-enantiomers of **4-(3-phosphonopropyl)piperazine-2-carboxylic** acid **(D-** and L-CPP, resp.; **15** and **16,** resp.), and of its unsaturated analogue **(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic** acid **(D-** and L-CPP-ene, resp.; **13** and **14,** resp.) were prepared. The absolute configuration of the enantiomers was determined by a chemical correlation of the menthyl ester **7** with o-asparagine. The affinity of these derivatives for the NMDA receptor was determined by displacement of $[^3H]$ CPP in rat cerebral cortical membranes. In two functional tests (the frog hemisected spinal cord preparation and the sodium efflux test from rat brain slices), o-CPP-ene appears to be the most potent, enantiomerically pure, competitive NMDA antagonist known to date.

1. Introduction. - During the last decade, it has become increasingly evident that excitatory amino acids (EAA) [1-4] play an important role in brain function. Among this class of substances, L-glutamate, L-aspartate, and L-homocysteic acid *[5]* are the most likely candidates as endogenous neurotransmitters. EAA bind to at least four subtypes of receptors named according to the known exogenous agonists N -methyl-D-aspartate (NMDA), quisqualic acid (Q), kainic acid (K), and **L-2-amino-4-phosphonobutyric** acid $(L-AP4)$. The NMDA receptor is the most intensively investigated of these receptors, due to the early discovery of selective antagonists like **2-amino-5-phosphonopentanoic** acid (AP5; 1) and 2-amino-7-phosphonoheptanoic acid (AP7; 2). The (\pm) -4-(3-phosphonopropyl)piperazine-2-carboxylic acid (CPP'); **3)** has been described as a selective and potent NMDA antagonist $[6-8]$, which possesses anticonvulsant $[6]$ $[8]$ $[9]$ and muscle-relaxant properties [8] [9], and also has protective effects against ischemia-induced brain damage in gerbils [10].

The stereoselectivity of the NMDA receptor is surprising. For the putative endogenous agonist glutamate, the receptor prefers the L-configuration: L-Glu has been shown to inhibit the binding of ³H]AP5 to rat cerebral cortex membranes with a K_i value of

¹) CPP is the abbreviation of the name 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid that is currently used in the literature. We prefer the nomenclature employed by *Chemical Abstracts* that considers the carboxylic-acid moiety as the principal group.

0.9 μm, compared to 49 μm for D-Glu [3]. In the case of the shorter homologue aspartate, the NMDA receptor does not differentiate between L-Asp $(K_i 11 \mu M 3)$ and D-Asp $(K_i$ 10 μ m [3]). The N-methylation of D-Asp to NMDA ((R) -configuration) does not modify the affinity for the receptor $(K_i 11 \mu M$ [3]), whereas the N-methylation of L-Asp to NMLA $((S)$ -configuration) decreases the binding affinity $(K_i 160 \mu)$. The preference for the (R)-configuration has also been observed in the case of the inhibitors AP5 **(1)** and AP7 **(2).** However, the preferred absolute configuration for cyclic analogues such as CPP was not known. We present here the synthesis of the enantiomers **15** and **16** of CPP and of the unsaturated analogue **(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic** acid (CPP-ene'); **13** and **14),** together with the biological data showing that D-CPP-ene **(13)** is the most active, enantiomerically pure, competitive NMDA antagonist known to date.

2. Results and Discussion. - **2.1.** *Synthesis.* The key step in the preparation of the pure enantiomers of CPP and CPP-ene consists in the isolation by fractional crystallization of the diastereoisomeric menthyl *N,N* **-dibenzylpiperazine-2-carboxylates 5** and *6 (Scheme 1).* These esters were prepared by transesterification of the known ethyl ester **4 [ll]** (-)-menthol and isolated as monohydrochloride **5.** HCl and dihydrochloride **6.2** HCl in **32** and **22%** yield, respectively. Hydrogenolysis of the benzyl groups of **5** and **6** gave the hydrochloride salts of the piperazine derivatives **7** and **8** in good yields. These piperazine derivatives were alkylated predominantly at $N(4)$ by reaction, at -25° , with diethyl **(E)-(3-bromoprop-l-enyl)phosphonate** [**121,** to afford the triesters **9** and **10** in 60 and **83** % yields, respectively.

A first trial to deprotect the triester **9** with 6N HCI (6 h at 100") gave a partially racemized product. To overcome this problem, the triesters **9** and **10** were first treated with BCl₃ in dichloroethane to cleave the menthyl ester (\rightarrow 11 and 12), and then with bromotrimethylsilane followed by H,O to deprotect the phosphonic-acid function. After crystallization until constant optical rotation, D-CPP-ene **(13)** and L-CPP-ene **(14)** were obtained in 58 and *55%* yield (rel. to **9** and **lo),** respectively. Reduction of the double bond leads to the enantiomers **15** and **16** of CPP in high yields. This reduction was performed in a basic solution (aqueous ammonia was used as the solvent) to avoid a cleavage of the allylic side chain.

2.2. *Enantiomeric Purity*. A direct determination of the optical purity of **13–16** using 'H-NMR spectroscopy and common chiral shift reagents was not possible, due to their insolubility in organic solvents. Therefore, **13-16** were permethylated with an excess of diazomethane, whereby the tetramethyl derivatives **17-20** were obtained as the main

 $R = Et, R' = H, (2S)$ 15 R=H, $(2R)$ CH₂N₂ 19 R=Me, $(2R)$
16 R=H, $(2S)$ CH₂N₂ 20 R=Me, $(2S)$ $R = R' = H$, (2*R*) CH_2N_2 17 $R = R' = Me$, (2*R*) $R = R' = H$, (25) $R = R' = Me$, (25)

products as well as the less stable trimethyl esters, lacking the $Me-N(1)$ group. The enantiomeric purity of the tetramethyl derivatives of CPP and CPP-ene could be assessed with 'H-NMR spectroscopy using $(-)$ - (R) -1- $(anhr-9-yl)$ -2,2,2-trifluoroethanol as a chemical shift reagent in CDCl₁: ee $> 99\%$ for 17 (from D-CPP-ene (13)), ee $\geq 98\%$ for **19** (from D-CPP **(15))** and for **20** (from L-CPP **(16)).**

2.3. *Configuration.* The absolute configuration of the CPP and CPP-ene derivatives was determined by chemical correlation of menthyl piperazine-2-carboxylate **(7)** with D-asparagine *via* acid **21** *(Scheme* 2). Z-Protected D-asparagine **(22)** was transformed into 3-amino-N-[(benzyloxy)carbonyl]-D-alanine (23) according to the procedure used for the corresponding L-enantiomer [13]. After esterification with SOCl₂ in MeOH (\rightarrow **24**) alkylation with methyl bromoacetate, and spontaneous cyclisation on removal of the Z-protecting group (\rightarrow 25), reduction with NaBH₄ gave (R)-piperazine-2-carboxylic acid **(21)** as the dihydrochloride salt in low yield. The optical rotation of this sample $[\alpha]_0^{20}$ = +5.9 (c = 1.25, H₂O) was in good agreement with the value measured for the samples of (R)-piperazine-2-carboxylic acid obtained by treatment of the menthyl ester **7** with HCl $([\alpha]_D^{20} = +5.2$ $(c = 1.2, H_2O)$ or with BCl₃ $([\alpha]_D^{20} = +5.8$ $(c = 1.1, H_2O)$). The values $\alpha|_{0}^{20} = +3.9$ and -3.9 ($c = 6$, H₂O) have been reported for the neutral form of the enantiomers of piperazine-2-carboxylic acid [141. X-Ray structure analysis of compound **13** [151 confirmed the absolute configuration established by chemical correlation.

2.4. *Biological Data.* The affinity of the enantiomers of CPP and CPP-ene for the NMDA receptor *(Table 1)* has been determined by inhibition of [3H]CPP binding in rat

	Configuration	K_i [μ M]	
$13. p$ -CPP-ene	$(-)$ - (R)	0.04 ± 0.01	
$14. L-CPP$ -ene	$(+)$ - (S)	0.60 ± 0.12	
15, D-CPP	$(-)$ - (R)	0.14 ± 0.02	
16, L-CPP	$(+)$ - (S)	2.33 ± 0.40	
3. DL-CPP	(\pm)	0.28 ± 0.04	
2, DL-AP7	(\pm)	4.2 [16]	
1. D-AP5	$(-)$ - (R)	0.5[16]	

Table **I.** *Inhibition oj"'H]CPP Binding in Rat Cortical Membrane* [16]

cortical membranes [16]. The D-enantiomers **15** and **13** of CPP $(K_i = 0.14 \mu M)$ and CPP-ene $(0.04 \mu M)$, respectively, appear to be *ca.* 15 times more potent than their corresponding L-enantiomers 16 and 14 $(2.33 \text{ and } 0.60 \mu\text{M})$, resp.). It does not seem likely that the affinity measured for the L-enantiomer is due to contamination by the D-enantiomer, the affinity measured being too strong compared to the enantiomeric purity of the samples $(ee > 98\%)$. The ability of the NMDA receptor to discriminate between the enantiomers of CPP and CPP-ene is similar to the selectivity observed in the case of the enantiomers of AP7 (2) : D-AP7 displaces $[^3H]$ -D-AP5 in rat cerebral cortex membranes $(K_i = 1.7 \,\mu\text{m})$ 16 times better than L-AP7 $(K_i = 28 \,\mu\text{m})$ [3]. So the NMDA receptor appears to be less selective in the case of the larger molecules AP7 and CPP than in the case of the smaller inhibitor AP5, whose D-enantiomer $(K_i = 0.62 \mu M$ [3]) binds 90 times better than the *L*-enantiomer $(K_i = 55 \mu M [3])$.

A similar potency ratio between the enantiomeric pairs has also been measured in electrophysiological studies using the isolated hemisected spinal cord of the frog [17] *(Table 2).* In this preparation, the D-enantiomer 15 of CPP ($pA_2 = 6.56$) is 13.5 times stronger than its L-enantiomer 16, $(pA_2 = 5.43)$ in inhibiting NMDA-induced depolarisation. In the case of the unsaturated analogue CPP-ene, the D-enantiomer **13,** $(pA_2 = 6.80)$ appears to be 12 times more potent then the L-enantiomer 14 $(pA_2 = 5.73)$.

	FHS		Na Efflux pA_2		
	concentration		apparent pA_2		
13, D-CPP-ene	$5 \mu M$		6.6, 6.8	6.5	
	10μ м		6.9, 6.9		
		mean	6.80 ± 0.14		
14, L-CPP-ene	10μ M		5.6	5.3	
	$20 \mu M$		5.9		
	30 μm		5.6		
	40μ M		5.8		
		mean	5.73 ± 0.15		
DL-CPP-ene	$10 \mu M$		6.3	6.2	
	20μ м		6.1		
		mean	6.20 ± 0.14		
15, D-CPP	$1 \mu M$		6.9	6.2	
	$5 \mu M$		6.6		
	$10 \mu M$		6.4		
	$20 \mu M$		6.4, 6.5		
		mean	6.56 ± 0.21		
16, L-CPP	$5 \mu M$		5.2	5.0	
	$20 \mu M$		5.5		
	$25 \mu M$		5.5		
	30 им		5.5		
		mean	5.43 ± 0.15		
3, DL-CPP	$20 \mu M$		6.0, 5.6	6.0	
	50 μm		5.5, 5.7		
		mean	5.70 ± 0.22		
2, DL-AP7			5.5[17]	5.3	

Table 2. *Inhibition of the NMDA-Induced Depolarisation in the Frog Hemisected Spinal Cord* **(FHS)** [17] *and ojthe NMDA-Induced*²²-Na Efflux in Rat Brain Slices [19]

For all these derivatives, similar pA , values at all concentrations tested indicate a competitive antagonism [18].

Compounds **15-16** have been tested further in the sodium efflux assay described by *Teichberg* and coworkers **[19].** In this model, the D-enantiomers inhibit the NMDA-induced sodium efflux from brain slices 16 times more efficiently than the L-enantiomers: pA2 = 6.2 and 5.0 for D- and L-CPP **(15** and **16),** respectively, 6.5 for D-CPP-ene **(13)** and 5.3 for L-CPP-ene **(14;** *Table* 2).

The data show that D-CPP-ene (13) , (R) -configuration, is the most active of these compounds. To our knowledge, these results demonstrate that D-CPP-ene is the most potent, enantiomerically pure, competitive NMDA antagonist known to date and **a** useful tool for the further investigation of the NMDA-receptor complex.

Experimental Part

All commercially available chemicals were used as provided by the supplier without purification. TLC: silica gel ('Kieselgel' *60 F-254* from *Merck).* Column chromatography: silica gel 60 (230-400 mesh) from *Merck* at medium pressure. M.p.: *Kofler* melting-point apparatus, *Thermopan;* uncorrected. Optical rotations: *Perkin-Elmer-241* polarimeter; cell length 10 cm; unless otherwise stated, at 20" and 589 nm. 'H-NMR spectra: *Bruker-*360-MHz spectrometer, unless otherwise stated; CDCl₃ solns., δ in ppm with TMS as standard, coupling constants *J* in **Hz.**

Menthy12) (*Rj-l,4-Dibenzylpiperuzine-2-curboxylute Hydrochloride Monohydrate (5.* HCI . H20). To a soln. of ethyl **1,4-dibenzylpiperazine-2-carboxylate** [ll] **(4;** 761 g, 2.25 mol) and (-)-menthol (458 g, 2.93 mmol) NaH (5540% dispersion; 15 g) and toluene (1 1) were added, at 45". *Cu.* 700 ml of the solvent were slowly removed by distillation and continuously replaced by new portions of toluene (monitoring by TLC, AcOEt/hexane 1:3). The mixture was cooled to r.t., treated with 2N aq. HCl (1.25 I) and Et₂O (6 I) and stirred thoroughly for 1 h. The crystalline precipitate was filtered off and washed with Et_2O and 0.1N aq. HCl. Recrystallization from EtOH/0.2N aq. HCl gave 364.71 g (32%) of 5.HCl·H₂O. White crystals. M.p. $> 145^{\circ}$ (slow liquefaction and formation of new crystals with m.p. 266°). $[\alpha]_D^{20} = +18.5$ *(c = 1.2, CHCl₃)*. Anal. calc. for C₂₉H₄₀N₂O₂·HCl·H₂O (503.12): C 69.2, H *8.6,* C17.0, N 5.6; found: C 69.2, H 8.6, CI 7.0, N 5.4.

For analysis, the free base 5 was isolated as a syrup after partition between Et_2O and conc. aq. NH₃. ¹H-NMR: 0.71 $(d, J = 7, 3 H)$; 0.79-1.12 $(m, 9 H)$; 1.39 $(ddt, J = 12.0, 12.0, 3.0, 1 H)$; 1.44-1.58 $(m, 1 H)$; 1.59-1.74 $(m, 2 H)$; 1.82 *(kept.,* 1 H); 1.98-2.08 *(m.* 1 H); 2.29-2.48 *(m.* **3** H); 2.61-2.80 (2 H); 2.943.05 *(w,* **1** H); 3.28 *(t, J* = 10.2, 1 H); 3.38 *(d, J* = 13.2,l H); 3.48-3.60(m, 2 H); 3.92 *(d, J* = 13, 1 H); 4.75 *(dt, J* = 11,4.2, **1** H); 7.18-7.38 *(m,* 10 H).

Menthy12) (Sj-1,4-Dibenzylpiperazine-2-eurboxylute Dihydrochloride (6.2 HCI). Recrystallization (EtOHj 0.2N aq. HCI) of the mother liquors obtained above gave 258 g (22%) of 6.2 HCl as white crystals. M.p. 158-160°. $[\alpha]_D^{20} = -106.9$ *(c =* 1.1, CHCl₃). Anal. calc. for C₂₉H₄₀N₂O₂. 2 HCl (521.57): C 66.8, H 8.1, Cl 13.6, N 5.4, O 6.1; found: C 66.1, H 8.1, C1 13.5, N 5.3, 0 6.1.

For analysis, the free base 6 was isolated as mentioned above. $H-MMR: 0.78$ *(d, J = 7, 3 H)*; 0.80–0.95 *(m,*) 8 H); 0.98-1.12 (m, 1 H); 1.32 (ddt, J = 12.0, 11.0, 3.0, 1 H); 1.42-1.56 (m, 1 H); 1.61-1.72 (m, 2 H); 1.83 (dsept., *^J*= 2.6,7, 1 H); 1.93-2.01 *(m,* 1 H); 2.35-2.47 *(m,* 2 H); 2.48-2.61 (m, 2 H); 2.73-2.84 *(m,* 1 H); 3.09-3.22 *(m,* 1 H); 3.26(dd, J = 5.6, 3.8, 1H); 3.37(d, J = 13.2, 1H); 3.57(d, J = 13.2, 1H); 3.63(br.d, J = 13, 1H); 3.89(d, J = 13, 1 H); 4.76 (dt, $J = 11.0, 4.2, 1$ H); 7.17-7.40 (m, 10 H).

Menthy12) (R)-Piperuzine-2-curboxylute Dihydrochloride (7.2 HCI). A soln. of 5 (210 g, 0.417 mol) in EtOH (2 1) was hydrogenated at r.t. and atmospheric pressure in the presence of 10% PdjC (10.5 g). After 7 h, the mixture was filtered and evaporated. The residue was treated with HCl/EtOH, the precipitate filtered and washed with EtOH/Et₂O 1:1. Recrystallization from $H_2O/MeOH/ACOE$ t gave 129.8 g (91%) of 7·2 HCl. White crystals. M.p. 225-226°. [a] ${}^{2}_{1}$ ⁰ = -52.0 *(c = 1.3, H₂O).* Anal. calc. for C₁₅H₂₈N₂O₂·2 HCl·0.5 H₂O (350.33): C 51.4, H 8.9, C120.2, N 8.0; found: C 51.7, H 8.9, C120.5, N 8.1.

The free base 7 was isolated after partition between conc. aq. NH_3 soln. and Et_2O and concentration of the org. phase. White crystals. M.p. 50-52°. [α] $_{10}^{20}$ = -56.7 (c = 1.1, CHCl₃). ¹H-NMR: 0.75 (d, J = 7.6, 3 H); 0.79-1.13 *(m, 9 H); 1.35-1.57 (m, 2 H); 1.58-1.93 (m, 5 H; with D₂O, 3 H); 1.96-2.06 (m, 1 H); 2.70-2.94 (m, 4 H); 2.95-3.05 (m.* 1 H); 3.23 *(dd, J* = 12.0, 3.2, 1 H); 3.43 *(dd, J* = 8.2, 3.6, **1** H); 4.74 *(dt, J* = 11.0, 4.0, 1 H). Anal. calc. for $C_{15}H_{28}N_2O_2$ (268.40): C 67.1, H 10.5, N 10.4; found: C 67.0, H 10.2, N 10.3.

Menthyl') (S/-Piperuzine-2-curboxylute Dihydrochloride (8.2 HCI). Hydrogenation of 6 (109.5 g, 0.21 mol) under the same conditions as described above gave 8 (55.6 g, 78%), after recrystallization from H₂O/MeOH/ AcOEt. White crystals. M.p. 211-220°. $[\alpha]_D^{20} = -55.2$ (c = 1.2, 2N aq. HCl). Anal. calc. for C₁₅H₂₈N₂O₂.2 HCl: CI 20.8; found: CI 20.8.

The free base 8 was isolated as above. M.p. $55-56^{\circ}$. ¹H-NMR: 0.76 *(d, J* = 7.0, 3 H); 0.80-1.14 *(m, 9 H)*; 1.341.58 *(m,* 2 H); 1.63-1.75 *(m,* 2 H); 1.85 *(dsept., J* = 7.0, 2.6, **1** H); 1.93-2.02 *(m.* 1 H): 2.36 (br. s, 2 H, exchanged with D₂O); 2.73-3.07 *(m, 5 H)*; 3.24 *(dd, J* = 12.0, 3.2, 1 H); 3.48 *(dd, J* = 8.2, 3.6, 1 H); 4.75 *(dt,* $J= 11.0, 4.2, 1$ H).

Menthyl²) *(R,E)-4-[3-(Diethoxyphosphinyl)prop-2-enyl]piperazine-2-carboxylate (9). To a soln. of 7 (free* base; 11.3 g, 42 mmol) and Et₃N (5.9 ml, 42 mmol) in THF (90 ml) was added, at -30° , within 30 min, diethyl **(E)-(3-bromoprop-l-enyl)phosphonate** [12] (10.7 g 42 mmol) in (45 ml) THF. The soln. was strirred at -25" for 20 h. After filtration of the precipitate, the soln. was evaporated and the oil purified by chromatography on silica gel, using CH₂Cl₂ with addition of an increasing concentration of conc. aq. NH₃ soln./EtOH 1:19, reaching 10% after 2 h. The fractions containing the product of R_f 0.35 (TLC, CH₂Cl₂/conc. aq. NH₃/EtOH 200:1:19) were evaporated: **9** (11.23 g, 60%) as an oil. [α] $_{10}^{20} = -56.0$ (c = 1.4, 2N aq. HCl). ¹H-NMR: 0.75 (*d, J* = 7.0, 3 H); 0.79-1.12 $(m,9H); 1.30-1.57(m, 8H); 1.64-1.74(m, 2H); 1.84$ (dsept., $J = 7.0, 2.6, 1H; 1.94-2.02(m, 1H); 2.20-2.32$ (br. *m,* 2 H; with D20, 1 H); 2.36-2.45 (br. *m,* 1 H); 2.52-2.59 *(m,* 1 H); 2.80-2.95 *(m, 2* H); 3.05 *(ddd, J* = 12.0,4.8, 3.0, 1 H); **3.1** 1-3.18 *(m,* 2 H); 3.54 *(dd, J* = 8.0, 3.0, 1 H); 4.004.16 *(m,* 4 H); 4.75 *(dt, J* = 11.0, 4.2, 1 H); 5.90 *(ddt, ^J*= 21.0, 17.0,2.3, 1 H); 6.72 *(ddt, J* = 22.0, 17.0, 5.5, 1 H).

²) Menthyl is used for $(1R, 2S, 5R)$ -5-methyl-2-(1-methylethyl)cyclohexyl.

The dihydrochloride salt **9.2** HC1 was obtained by crystallization from ethanolic HCl/Et,O. White crystals. M.p. $157-163^\circ$. $[\alpha]_0^{20} = -48.2$ (c = 1.4, 2N aq. HCl). Anal. calc. for C₂₂H₄₁N₂O₅P·2 HCl (517.47): C 51.1, H 8.4, Cl 13.7, N 5.4, O 15.5, P 6.0; found: C 50.2, H 8.3, Cl 13.8, N 5.2, O 15.6, P 6.0.

Menthyl²) (S,E)-4-[3- *(Diethoxyphosphinyl)prop-2-enyl]piperazine-2-carboxylate* (10). A soln. of **8** (22.5 g, 0.84 mol) and Et_1N (11.9 ml, 0.85 mol) in THF (160 ml) was treated as above with diethyl (E) -(3-bromo-prop-1eny1)pbosphonate [I21 (21.6 g, 0.84 mol) in THF (42 ml). After chromatography (as above), **10** (31.1 g, 83%) was isolated as an oil $(R_1 0.45, \text{ } \frac{di}{D} = -31.2 \text{ (}c = 1.2, 2N \text{ HCl} \text{)}$. ¹H-NMR: 0.75 *(d, J* = 7.0, 3 H); 0.80-1.13 *(m,* 9 H); 1.23-1.60 *(m,* 8 H); 1.61-1.75 *(m.* 2 H); 1.77-2.02 (m. 3 H); 2.22-2.29 *(m,* 1 H); 2.31-2.43 *(m,* 1 H); 2.54-2.64 *(m,* 1 H); 2.80-2.93 *(m,* 2 H); 3.07 *(ddd, J* = 12,4,2, 1 H); 3.1 1-3.18 *(m,* 2 H); 3.54 *(dd, J* = 8,3, 1 H); 4.00-4.18 *(m, 4H);4.75(dt,J=11.0,4.2,1H);5.91(ddt,J=21,17,2,1H);6.73(ddt,J=22,17,6,1H).*

(R,E)-4-[3-(Diethoxyphosphin.vl)prop-2-enyl]piperuzine-2-carboxylic Acid **(11).** To a soh. of **9** (8.58 g, 19 mmol) in anh. CH₂Cl₂ (86 ml) was added, at -30° within 20 min, a 2.2M soln. of BCl₃ in 1,2-dichloroethane (38.6) ml). The mixture was stirred 1 h at -25° and 3.5 at 0° . At 0° , H₂O (86 ml) was added, and the mixture was brought to pH 6 by addition of aq. NaOH soln. The aq. phase was evaporated, the residue taken up in CHCl₃, filtered, dried $(Na₂SO₄)$, and evaporated to give **11** (6.21 g) as an oil: $R₁ 0.27$ (TLC, AcOEt/AcOH/H₂O 5:2:2). This crude material was used without further purification in the next step. An anal. sample was obtained by HPLC *(Nucleosil* $RP-8$, MeOH/H₂O 2:3): α ₁ $^{20}_{0}$ = -18.0 (c = 1.1, 2N aq. HCl). ¹H-NMR (DMSO, 150°): 1.24 (t, J = 7.0, 6 H); 2.26 *(ddd, J* = 11.2, 9.0, 3.2, 1 H): 2.35 *(dd, J* = 11.6, 8.6, **1** H); 2.52-2.58 *(m,* **1** H); 2.77 *(ddd, J* = 12.0, 9.2, 3.2, 1 H); 2.83 *(ddd, J* = 11.6,3.6, 1.6, 1 H); 2.99 *(ddd, J* = 12.0,4.0, 3.0, 1 H); 3.10-3.15 *(m,* 2 H); 3.33 *(dd, J* = 8.4, 3.4, 1 H); 3.97(dq, *J* = 8.6, 7.0,4H); 5.50(br. s,2H); 5.88 *(ddt, J* =21.0, 17.0,2.0, 1 H); 6.52 *(ddt, J* =22.0, 17.0, 5.6, 1 H).

(R,E/-4-(3-Phosphonoprop-2-enyl)piperazine-2-carboxylic Aid Hydrate (= *D-CPP-ene H20* ; **13.** H,O). A soln. of crude 11 obtained from $9(11.61 \text{ g}, 26 \text{ mmol})$ in abs. CH₂Cl₂ (300 ml) was treated at r.t. with bromotrimethylsilane (30.69 g, 200 mmol). After 16 h at r.t., the mixture was evaporated. The residue was partitioned between H₂O and CH₂Cl₂ and the aq. phase neutralised to pH 7-8 by addition of *Dowex 1* \times 4 (OH⁻ form). The mixture was poured on the top of a column containing a 30-ml layer of *Dowex 1* \times 4 (AcO⁻ form) and eluted with a gradient of aq. AcOH (0.05–0.25N). The fractions containing the product of R_f 0.15 (TLC, MeOH/H₂O/conc. NH, 90 *:5* : *5)* were concentrated and freeze-dried. The residue (6.5 g) was crystallized from H,O/EtOH to give **13** (4.0 g, 58%) as hydrate. White crystals. M.p. 206° (dec.). $[\alpha]_D^{20} = -21.7$ ($c = 1.1$, 2N aq. HCl). ¹H-NMR (D₂O): 3.27F3.55 *(w,* 3 H); 3.70-3.85 *(m,* 2 H); 3.904.10 *(m,* 3 H); 4.17 *(dd, J=* 11.0, 3.8, 1 H); 6.27-6.48 *(m,* 2 H). 13 C-NMR (D₂O): 42.40 *(s)*; 50.09 *(s)*; 53.08 *(s)*; 57.67 *(s)*; 61.40 *(d, J* = 24); 133.16 *(d, J* = 5.5); 138.76 *(d,* $J = 172$; 171.020 (s). Anal. calc. for C₈H₁₅N₂O₅P·H₂O (268.21): C 35.8, H 6.4, N 10.4, P 11.5; found: C 35.6, H 6.4, N 10.7, P 11.5.

(S,E)-4-/3-Phosphonoprop-2-enyl)piperazine-2-carboxyIic Acid Hydrate (= *I.-CPP-ene* . *H20* ; 14. H,O). The crude **12** obtained from **10** (4.7 g, 10.6 mmol) under the same conditions as for **11,** gave, after treatment with trimethylbromosilane, (10 ml), chromatography on *Dowex-1* \times 4 (OH⁻ form) and crystallization (H₂O/EtOH), 1.55 g (55%) of 14 · H₂O. White crystals. M.p. 213° (dec.). [α] $_{10}^{20}$ = +21.6 (c = 1.1, 2 α HCl). ¹H-NMR: as for 13. Anal. calc. for $C_8H_{15}N_2O_5P\cdot H_2O$ (268.21): C 35.8, H 6.4, N 10.4, P 11.5; found: C 35.4, H 6.3, N 10.4, P 11.9.

(R)-4-(3-Phosphonopropyl)piperuzine-2-curboxylic AcidHydrate (15.H20). A soln. of **13** (1.6 g, **6.0** mmol) in conc. $NH₃/H₂O$ 1:1 (26 ml) was hydrogenated at r.t. and normal pressure in the presence of 160 mg of 10% Pd/C. After the absorption of H₂ had ceased, the soln. was filtered. *Dowex 1* \times 4 (OH⁻ form) was added until pH 9 and the mixture poured on the top of a column containing 10 ml of *Dowex 1* \times *4* (AcO⁻). Elution with an aq. AcOH gradient (0-0.2N) gave, after lyophilisation, 1.13 g (75%) of 15 that was crystallized from H₂O/MeOH. White crystals. M.p. 206° (dec.). $[\alpha]_{0}^{20} = -20.4$ *(c = 1.2, 2N HCl).* ¹H-NMR (200 MHz, D₂O): 1.56-1.79 *(m, 2 H)*; 1.86-2.13 *(m,* 2 H); 3.19-3.53 (m. 5 H); 3.66-3.86(m, 2H); 3.924.05 *(m.* 1 H); 4.10 *(dd,J* = 11.0, 3.6, 1 H). Anal. **calc.forC,Hl,N,O,P~H,O(270.22):C35.6,H7.1,N10.4,P** 11.5;found:C35.6,H7.5,N10.4,P11.9.

(S)-4-(3-Pliosphonopropyljp~erazine-2-carboxylic Acid Hydrate (16.H20). *A* soln. of **14** (3 g, 11.2 mmol) was reduced as above to give 16 (2.57 g, 91.1%) as a partially hydrated foam. $\alpha|_{\text{D}}^{20} = +19.2$ (c = 1.3, 2N HCI). ¹H-NMR (200 MHz, D₂O): as for **15**. Anal. calc. for C₈H₁₇N₂O₅P·0.3 H₂O (257.62): C 37.3, H 6.9, N 10.9, P 12.0; found: C 37.6, H 6.9, N 10.6, P 11.7.

Methyl (R,E/ *-4-13- (Dimethoxyphosphinyl)prop-2-enyl]-l-methylpiperazine-2-carboxylate* **(1 7).** A soh. of **13** (360 mg, 1.34 mmol) in H₂O (25 ml) and MeOH (10 ml) was treated with a large excess of CH₂N₂ [20] until persistence of the yellow colour. After destruction of the excess diazomethane with AcOH and evaporation, the resulting oil was purified by chromatography on silica gel $(CH_2Cl_2/EtOH/conc. NH_3 90:9:1)$. The product with R_1 0.45 (TCL, *dito)* was isolated to give **17** (100 mg, 24%) as an oil. 'H-NMR: 2.32-2.49 *(m,* 6 H); 2.63-2.72 *(m,* **1** H); 2.76-2.85 (m, 1 H); 2.91-3.00 (m, 1 H); 3.05 (dd, $J = 9,4$, 1 H); 3.12-3.17 (m, 2 H); 3.73 (d, $J = 11,6$ H); 3.75 (s, 3 H); 5.87 *(ddt, J* = 21, 17,2, **1** H); 6.74 *(ddt, J* = 22, 17, 6, 1 H).

The same procedure was applied for the preparation of **18-20.**

Methyl (S,E) -4-13- *(Dimethoxyphosphinyl)prop-2-enyl]-1-methylpiperazine-2-carboxylutc* **(18)** : From **14.**

Methyl (R)-4-[3-(Dimethoxyphosphinyl)propyl]-I-methylpiperazine-2-carboxylate **(19):** From **15.** 'H-NMR: 1.67-1.87 *(m,* 4 H); 2.25-2.46 *(m,* 8 H); 2.61-3.06 *(m,* 4 H); 3.74 *(d, J* = 11,6 **H);** 3.77 (s, 3 H).

Methyl (S)-4-/3-(Dimethoxyphosphinyl)propyl]-I-methylpiperazine-2-carboxylute **(20):** From **16.**

(R)-Piperazine-2-curboxylic Acid Dihydrochloride **(21** '2HC1). *From Methyl (R)-6-Oxopiperazine-2-carhoxylate* **(25).** To **a** stirred mixture of **25** (553 mg, **3.5** mmol) and NaBH, (665 mg, 17.6 mmol) in anh. dioxane (14 ml), AcOH (1 ml) in dioxane (1 ml) was added at *0"* within 20 min. The mixture was stirred for 0.5 h at 20" and 0.5 hat 70° . The mixture was evaporated, the residue treated with ice and extracted with CH_2Cl_2 , the org. layer dried (Na_2SO_4) and evaporated, the oily residue (0.2 g) dissolved in conc. HCl soln. (0.4 ml) and H_2O (0.8 ml), and the soln. heated under reflux for 15 min. The crystals were filtered off, washed with H₂O/EtOH and then with EtOH: 55 mg of **21** as white crystals. M.p. 238-243° (dec.). $[\alpha]_D^{21} = +5.9$ (c = 1.25, H₂O). ¹H-NMR (D₂O): 3.35-3.56 *(m,* 3 H); 3.66-3.86 (m, 2 H); 3.96 *(dd, J* = 14.0, 4.0, 1 H); 4.32 *(dd, J* = 11.0, 4.0, **1** H). Anal. calc. for **C,H~,N,Oz~2HCI(2O3.07):C29.6,H6.0,C134.9,N** 13.8;found:C29.5,H5.8,CI35.1,N13.8.

From 7 with HCI. A soln. of 7 · 2HCl (500 mg, 1.46 mmol) in 6N aq. HCl (6 ml) was heated 2 h at 120°. The soln. was cooled to r.t. and Et_2O was added. The crystalline material was filtered off and washed with EtOH and Et₂O. Recrystallization from H₂O/EtOH gave 194 mg (65%) of **21**. M.p. 252-255° (dec.). $[a]_D^{20} = +5.2$ (c = 1.2, H₂O). 1 H-NMR (D₂O): as above.

From 7 with BCl_3 . A soln. of 610 mg (2.25 mmol) of 7 (free base) in CH₂Cl₂ (6 ml) was treated at -20° with 2.2N BCI₃ in 1,2-dichloroethane (4.1 ml), kept overnight at -20° , neutralised by addition of aq. NH₃ soln., and partitioned between H_2O and CH_2Cl_2 . The aq. phase was evaporated and the residue crystallized from H_2O / ethanolic HCl to afford 200 mg (43%) of **21**. M.p. 247-253° (dec.). [α] $_{10}^{20}$ = +5.8 (c = 1.1, H₂O). ¹H-NMR (D₂O): as above.

3-Amino-N-[*(bmzyloxy) carbonyl] -malanine* **(23)** was prepared according to the procedure reported for the L-enantiomer [13]. M.p. 230-232° (dec.). $[\alpha]_D^{20} = +7.5$ (c = 1.3, IN NaOH) ([13]: m.p. 228-230°, $[\alpha]_D^{20} = -7.8$ $(c = 0.4, 1N$ NaOH)).

3-Amino-N-[*(benzyloxy)carbonyl]-*D-alanine Methyl Ester Hydrochloride **(24**·HCl). To a precooled (--10°) mixture of anh. MeOH (23 ml) and SOCI₂ $(2.2 \text{ ml}, 30 \text{ mmol})$, **23** $(7.1 \text{ g}, 29.8 \text{ mmol})$ was added. The mixture was stirred 0.5 h at 20° and 5 h at 50°. After standing overnight, the product crystallized: 7.5 g (87%). Colourless crystals. M.p. $169-171^{\circ}$. $\left[\alpha\right]_{12}^{22} = +41.9$ (c = 1.35, H₂O; [21]: m.p. $165-167^{\circ}$; $\left[\alpha\right]_{12}^{20} = -42.5$ (c = 1, MeOH) for the L-enantiomer). Anal. calc. for C,,H,,N,O,~HCI (288.73): C 49.9, H 5.9, CI 12.3, N 9.7; found: **C** 50.1, H 5.6, **CI** 12.4, N 9.7.

Methyl (R)-6-Oxopiperazine-2-carboxylute **(25).** To **a** stirred mixture of **24** (free base; 6.2 g, 24.5 mmol), Et(i-Pr)₂N (3.5 g, 26.7 mmol), and anh. THF (65 ml), methyl bromoacetate in anh. THF (10 ml) was added at 0° in 15 min. The mixture was stirred for 1 h at 0° and left overnight at 20° , the suspension was filtered, and the filtrate evaporated. The residue was treated with Et₂O, filtered, and the solvent evaporated. The oily residue (7.8 g) was dissolved in EtOH (100 ml) and hydrogenated over 10% Pd/C. The catalyst was filtered off, the solvent removed, and the product crystallized from EtOH/Et,O: 2.7 g (70%) of **25** as colourless crystals. M.p. 137-145". 3.60-3.95 (br., 1 H); 3.66 (s, 3 H); **4.03** (Xof *ABX,* 1 H); 7.85 (br. s, **1** H). Anal. calc. for C,H,,N,O, (158.16): C 45.6, H 6.4, N 17.7, O 30.3; found: C 45.0, H 6.3, N 17.5, O 30.0. $[\alpha]_D^{20} = -14.7$ (c = 1.25, H₂O). ¹H-NMR (DMSO): 3.01 (*AB* of *ABX*, *J* = 13, 2 H); 3.18 (*AB*, *J* = 17, 2 H);

We are grateful to Mrs. *T. Zurdin* and Mr. *H. R. Loosli (Sandoz,* Basle) for the NMR studies and to Mr. *J. J. Boelsterli* and Dr. *M. D. Walkinshaw* for the X-ray investigation of compound **13.**

REFERENCES

- **[I]** R. L. Johnson, **J.** F. Koerner, *J. Med. Chem.* **1988,31, 2057.**
- **[2]** J. Lehmann, **J.** A. Schneider, M. Williams, *Annu. Rep. Med. Chem.* **1987, 22, 31.**
- **[3] J.** C. Watkins, H. **J.** Olverman, *Trends Neurosci.* **1987, 10,265.**
- **[4]** T. Honore, *Med. Res. Rev.* **1989, 9, 1.**
- **[5]** K. *Q.* Do, P. L. Herrling, P. Streit, W. A. Turski, M. Cuenod, *J. Neurosci.* **1986,6,2226.**
- **[6]** J. Davies, R. H. Evans, P. L. Herrling, A. W. Jones, **H. J.** Olverman, P. Pook, J. C. Watkins, *Bruin Res.* **1986, 382, 169.**
- **[7] E.** W. Harris, **A.** H. Ganong, D.T. Monaghan, **J.** C. Watkins, C. **W.** Cotman, *Brain Res.* **1986,382, 174.**
- *[8]* **J.** Lehmann, J. Schneider, S. McPherson, D. E. Murphy, P. Bernard, P. C. Tsai, D. **A.** Bennett, G. Pastor, D. J. Steel, C. Boehm, D. L. Cheney, **J.** M. Liebman, M. Williams, P. L. Wood, *J. Phurmacol. Exp. Ther.* **1987,240, 737.**
- **[9] L.** Turski, T. Klockgether, K. **H.** Sontag, P. *L.* Herrling, **J.** C. Watkins, *Neurosci. Lett.* **1987, 73, 143.**
- **[lo]** C. A. Boast, **S.** C. Gerhardt, G. Pastor, J. Lehmann, P. E. Etienne, J. M. Liebman, *Brain Res.* **1988,442, 345.**
- **[l I]** E. Jucker, **E.** Rissi, *Helu. Chim. Acta* **1962,** *45,* **2383.**
- **[I21** K. Hemmi, **H.** Takcno, M. Hashimoto, T. Kamiya, *Chem. Pharm. Bull.* **1982,30, 111.**
- **[I31** M. Waki, **Y.** Kitdjiama, N. Izumiya, *Synthesis* **1981, 266.**
- **[14]** E. Felder, **S.** Maffei, S. Pietra, D. Pitre, *Helu. Chim. Acta* **1960.43, 888.**
- [15] M.D. Walkinshaw, J.J. Boelsterli, unpublished results.
- **[16]** H. **J.** Olverman, D. T. Monaghan, C. W. Cotman, J. C. Watkins, *Eur. J. Pharm.* **1986,131, 161.**
- **[I71** P. L. Herrling, *Neuroscience* **1985, 14,417.**
- **[18]** T. P. Kenakin, 'Pharmacological Analysis of Drug-Receptor Interaction', Raven Press, New York, **1987.**
- **[I91** A. Luini, 0. Goldberg, V.I. Teichberg, *Proc. Nafl. Acad. Sci. U.S.A.* **1981,** *78,* **3250.**
- **[20]** T. **J.** De Boer, H. J. Backer, *Org. Synth.* **1963,** *CON. Vol. 4,* **943.**
- **[21] S.** Moore, R. P. Patel, E. Atherton, M. Kondo, J. Meienhofer, L. Blau, R. Bittman, R. K. Johnson, *J. Med. Chem.* **1976,19,766.**